Singular ridge regression with homoscedastic residuals: generalization error with estimated parameters
نویسندگان
چکیده
This paper characterizes the conditional distribution properties of the finite sample ridge regression estimator and uses that result to evaluate total regression and generalization errors that incorporate the inaccuracies committed at the time of parameter estimation. The paper provides explicit formulas for those errors. Unlike other classical references in this setup, our results take place in a fully singular setup that does not assume the existence of a solution for the non-regularized regression problem. In exchange, we invoke a conditional homoscedasticity hypothesis on the regularized regression residuals that is crucial in our developments.
منابع مشابه
Two-Parameters Fuzzy Ridge Regression with Crisp Input and Fuzzy Output
In this paper a new weighted fuzzy ridge regression method for a given set of crisp input and triangular fuzzy output values is proposed. In this regard, ridge estimator of fuzzy parameters is obtained for regression model and its prediction error is calculated by using the weighted fuzzy norm of crisp ridge coefficients. . To evaluate the proposed regression model, we introduce the fu...
متن کاملPrediction of chronological age based on Demirjian dental age using robust ridge regression method
Introduction: Estimation of age has an important role in legal medicine, endocrine diseases and clinical dentistry. Correspondingly, evaluation of dental development stages is more valuable than tooth erosion. In this research, the modeling of calendar age has been done using new and rich statistical methods. Considerably, it can be considering as a practicable method in medical science that is...
متن کاملA New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions
In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...
متن کاملEfficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals
‘Classical regression analysis’ assumes the normality (N), homoscedasticity (H) and serial independence (I) of regression residuals. Violation of the normality assumption may lead the investigator to inaccurate inferential statements. Recently, tests for normality have been derived for the case of homoscedastic serially independent (HZ) residuals [e.g., White and Macdonald (1980)]. Similarly, t...
متن کاملDistributed Semi-supervised Learning with Kernel Ridge Regression
This paper provides error analysis for distributed semi-supervised learning with kernel ridge regression (DSKRR) based on a divide-and-conquer strategy. DSKRR applies kernel ridge regression (KRR) to data subsets that are distributively stored on multiple servers to produce individual output functions, and then takes a weighted average of the individual output functions as a final estimator. Us...
متن کامل